Abstract

The photoinduced desorption of NO molecules on a Ag surface was studied theoretically using a recently developed method based on the nonequilibrium Green's function approach combined with the density functional theory. Geometry optimizations for the stable NO dimer phase were carried out, and two structures of adsorbed dimers were identified. We calculated the reaction probabilities as a function of incident photon energy for each of the dimers and compared them with experimental action spectra. The two main features of the action spectra, (i) a long tail to the long wavelength (approximately 600 nm) and (ii) a rapid increase at approximately 350 nm, were well reproduced. By theoretical analysis, we found the importance of quantum interference for the interfacial charge transfer between the metal substrate and the adsorbate, as well as the contribution of secondary electrons. Our calculations suggest that the photoactive species is dimeric and that the resonant level is single for the photodesorption of NO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call