Abstract

Photochromic molecules with aggregation-induced emission (AIE) effects are of great value and prospective in various practical applications. To explore its inherent mechanism, the open isomer ap-BBTE and the closed isomer c-BBTE were chosen to perform the theoretical calculation using the quantum mechanics/molecular mechanics model combined with thermal vibration correlation function formalism. The calculations show that the photocyclization (PC) reaction from ap-BBTE to c-BBTE facilitates an improvement in the AIE effect. It is found that the fluorescence quantum yield (ΦF) enhancement of ap-BBTE is attributed to the restriction of the low-frequency rotational motion of the benzothiophene moiety and the high-frequency stretching vibrations of the C-C bond between the benzothiophene and benzylbis(thiadiazole) vinyl groups after aggregation. For c-BBTE, the increase in ΦF upon aggregation is mainly due to the suppression of the high-frequency stretching vibration of the C-C bond between the benzothiophene and the benzobis(thiadiazole) vinyl groups. In addition, the AIE effect was also enhanced from ap-BBTE to c-BBTE, which is consistent with the experimental phenomenon. The corresponding emission spectrum red-shifted from ap-BBTE to c-BBTE in both dilute solution and the crystalline state due to the improved intramolecular conjugation of c-BBTE. Moreover, the PC reaction from ap-BBTE to c-BBTE easily occurs in an excited state with a low energy barrier transition state by forming a C-C bond between benzothiophene groups effectively in dilute solution. Our calculations provide theoretical guidance for the further rational design of efficient AIE luminogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call