Abstract

A full quantum theoretical model is proposed to study the ν O–H experimental IR line shapes of polarized crystalline glutaric and 1-naphthoic acid dimer crystals at room and liquid nitrogen temperatures. This work is an application of a previous model [M. E-A. Benmalti, D. Chamma, P. Blaise, and O. Henri-Rousseau, J. Mol. Struct. 785 (2006) 27–31] by accounting for Fermi resonances. The approach is dealing with the strong anharmonic coupling, Davydov coupling, multiple Fermi resonances between the first harmonics of some bending modes and the first excited state of the symmetric combination of the two ν O–H modes and the quantum direct and indirect relaxation. Numerical results show that mixing of all these effects allows to reproduce satisfactorily the main features of the experimental IR line shapes of crystalline hydrogenated and deuterated glutaric and 1-naphthoic acid crystals and are expected to provide efficient of Fermi resonances effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.