Abstract
The reaction of the trimetallic species [Fe(3)O(PhCOO)(6)(H(2)O)(3)]NO(3) with 1,1,1-tris(hydroxymethyl)ethane (H(3)thme) affords either the octametallic species [Fe(8)(PhCOO)(12)(thme)(4)] 1 or the hexadecametallic species [Fe(16)(EtO)(4)(PhCOO)(16)(Hthme)(12)](NO(3))(4) 2, depending on the nature of the solvent used for crystallization. The structure of 1 can be described as a nonplanar wheel of eight Fe(III) ions bridged by a combination of PhCOO(-) and thme(3)(-) ligands, and 2 as a nonplanar wheel of sixteen Fe(III) ions bridged by PhCOO(-), Hthme(2)(-), and EtO(-) ligands. Both compounds can be broken down into simple units of two metal ions and the bridging ligands that connect them. The best fits of the chi vs T curves in the 300-10 K temperature range were obtained with the parameters g = 2.0, J(1) = -24.0 cm(-1), and J(2) = -8.59 cm(-1) for [Fe(8)] and g = 2.0, J(1) = -25.0 cm(-1), J(2) = -11.73 cm(-1), and J(3) = -69.3 cm(-1) for [Fe(16)]. Density functional theory (DFT) calculations show that the antiferromagnetic interactions between the metals in the dinuclear units decrease when two types of bridging ligands are present, as expected for an orbital counter-complementarity effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.