Abstract
Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200–3,000 K as\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\begin{array}{*{20}c} {k\\left( {\\mathrm{C}{{\\mathrm{H}}_3}\\mathrm{C}\\mathrm{l}+\\mathrm{Cl}} \\right) = 2.08\ imes {10^{-11 }}\ imes {{{\\left( {{{\\mathrm{T}} \\left/ {300 } \\right.}} \\right)}}^{1.63 }}\ imes\\exp \\left( {{-12780 \\left/ {\\mathrm{T}} \\right.}} \\right)\\ }{\\mathrm{c}{{\\mathrm{m}}^3}\\mathrm{molecul}{{\\mathrm{e}}^{-1 }}{{\\mathrm{s}}^{-1 }}} \\\\ {k\\left( {\\mathrm{C}{{\\mathrm{H}}_2}\\mathrm{C}{{\\mathrm{l}}_2}+\\mathrm{Cl}} \\right) = 2.36\ imes {10^{-11 }}\ imes {{{\\left( {{{\\mathrm{T}} \\left/ {300 } \\right.}} \\right)}}^{1.23 }}\ imes\\exp \\left( {{-10960 \\left/ {\\mathrm{T}} \\right.}} \\right)}{\\mathrm{c}{{\\mathrm{m}}^3}\\mathrm{molecul}{{\\mathrm{e}}^{-1 }}{{\\mathrm{s}}^{-1 }}} \\\\ {k\\left( {\\mathrm{C}\\mathrm{HC}{{\\mathrm{l}}_3}+\\mathrm{Cl}} \\right) = 5.28\ imes {10^{-11 }}\ imes {{{\\left( {{{\\mathrm{T}} \\left/ {300 } \\right.}} \\right)}}^{0.97 }}\ imes\\exp \\left( {{-9200 \\left/ {\\mathrm{T}} \\right.}} \\right)}{\\mathrm{c}{{\\mathrm{m}}^3}\\mathrm{molecul}{{\\mathrm{e}}^{-1 }}{{\\mathrm{s}}^{-1 }}} \\\\ {k\\left( {\\mathrm{C}\\mathrm{C}{{\\mathrm{l}}_4}+\\mathrm{Cl}} \\right) = 1.51\ imes {10^{-10 }}\ imes {{{\\left( {{{\\mathrm{T}} \\left/ {300 } \\right.}} \\right)}}^{0.58 }}\ imes \\exp \\left( {{-7790 \\left/ {\\mathrm{T}} \\right.}} \\right)}{\\mathrm{c}{{\\mathrm{m}}^3}\\mathrm{molecul}{{\\mathrm{e}}^{-1 }}{{\\mathrm{s}}^{-1 }}} \\\\ \\end{array} $$\\end{document} The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\begin{array}{*{20}c} {k\\left( {\\mathrm{C}{{\\mathrm{H}}_3}+\\mathrm{C}{{\\mathrm{l}}_2}} \\right) = 6.70\ imes {10^{-13 }}\ imes {{{\\left( {{{\\mathrm{T}} \\left/ {300 } \\right.}} \\right)}}^{1.51 }}\ imes \\exp \\left( {{270 \\left/ {\\mathrm{T}} \\right.}} \\right)}{\\mathrm{c}{{\\mathrm{m}}^3}\\mathrm{molecul}{{\\mathrm{e}}^{-1 }}{{\\mathrm{s}}^{-1 }}} \\\\ {k\\left( {\\mathrm{C}{{\\mathrm{H}}_2}\\mathrm{C}\\mathrm{l}+\\mathrm{C}{{\\mathrm{l}}_2}} \\right) = 7.34\ imes {10^{-14 }}\ imes {{{\\left( {{{\\mathrm{T}} \\left/ {300 } \\right.}} \\right)}}^{1.43 }}\ imes \\exp \\left( {{390 \\left/ {\\mathrm{T}} \\right.}} \\right)}{\\mathrm{c}{{\\mathrm{m}}^3}\\mathrm{molecul}{{\\mathrm{e}}^{-1 }}{{\\mathrm{s}}^{-1 }}} \\\\ {k\\left( {\\mathrm{C}\\mathrm{HC}{{\\mathrm{l}}_2}+\\mathrm{C}{{\\mathrm{l}}_2}} \\right) = 6.81\ imes {10^{-14 }}\ imes {{{\\left( {{{\\mathrm{T}} \\left/ {300 } \\right.}} \\right)}}^{1.60 }}\ imes \\exp \\left( {{-370 \\left/ {\\mathrm{T}} \\right.}} \\right)}{\\mathrm{c}{{\\mathrm{m}}^3}\\mathrm{molecul}{{\\mathrm{e}}^{-1 }}{{\\mathrm{s}}^{-1 }}} \\\\ {k\\left( {\\mathrm{C}\\mathrm{C}{{\\mathrm{l}}_3}+\\mathrm{C}{{\\mathrm{l}}_2}} \\right) = 1.43\ imes {10^{-13 }}\ imes {{{\\left( {{{\\mathrm{T}} \\left/ {300 } \\right.}} \\right)}}^{1.52 }}\ imes \\exp \\left( {{-550 \\left/ {\\mathrm{T}} \\right.}} \\right)}{\\mathrm{c}{{\\mathrm{m}}^3}\\mathrm{molecul}{{\\mathrm{e}}^{-1 }}{{\\mathrm{s}}^{-1 }}} \\\\ \\end{array} $$\\end{document}allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.