Abstract

We theoretically study the single ionization of liquid water by energetic electrons through one active-electron first-order model. We analyze the angular ejected electron spectra corresponding to the most external orbitals 1B1, 2A1, 1B2 and 1A1 of a single water molecule. We work to create a realistic description of those orbitals corresponding to single molecules in the liquid phase. This goal is achieved by means of a Wannier orbital formalism. Multiple differential cross sections are computed and compared with previous calculations for both liquid and gas phases. In addition, our present results are integrated over all orientations and compared with experimental ones for randomly oriented vapour water molecules, as no experiments currently exist for the liquid phase. Moreover, we estimate the influence of the passive electrons on the reaction by means of a model potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.