Abstract

In this work, an attempt is made to theoretically substantiate the experimentally known facts of the influence of halogen concentration on the catalytic properties of the neodymium-based Ziegler–Natta system. Based on the structural and thermochemical data obtained using modern methods of quantum chemistry, the process of the 1,3-butadiene cis-1,4-polymerization under the model active centers of the neodymium Ziegler–Natta catalysts with different contents of chloride ions was studied. Results are presented that explain the increase in the cis-stereospecificity and activity of the polymerization system with an increase in the content of the chloride ions in the neodymium catalytic system. Reasons were established for the decrease in the concentration of active centers relative to the introduced Nd(III) with an excess of chloride ions and the occurrence of the anti-syn isomerization as a source of the formation of the trans-1,4-structures in the cis-1,4-polybutadiene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.