Abstract

AbstractThe gas‐phase ion pair SN2 reactions at saturated sulfur LiX + CH3SY → CH3SX + LiY (X, Y = F, Cl, Br, I) are investigated using the CCSD(T) calculations. The calculated results show that the reactions LiX + CH3SY are exothermic only when the nucleophile is a heavier lithium halide. Central barrier heights are found to depend primarily on the identity of nucleophile LiX, decreasing in the order LiF > LiCl > LiBr > LiI. Another interesting feature of the ion pair reactions at sulfur is the good correlation between the reaction barriers with geometrical looseness of LiX and SY bonds in the transition state structures. The data for the reaction barriers show good agreement with the prediction of the Marcus equation and its modification. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.