Abstract

In order to study the influencing factors of friction coefficient in an M-B model, based on the basic model of fractal theory, the distribution function and probability distribution density of the micro-convex body truncation area are derived by using mathematical and statistical means, and a new model of critical truncation area and friction coefficient in fractal surface contact process are proposed. Considering the differences between the actual contact area and the truncated area during plastic deformation of the micro-convex body, a correction factor is introduced. Focusing on the mechanism of the elastic-plastic transition phase, and finally a friction coefficient model based on the fractal dimension, the normal force and correction factor is derived. Finally, the friction coefficient of fractal surface is simulated and verified by taking nickel as an example, and it is proved that the new model is correct in predicting the change trend of friction coefficient in the M-B model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call