Abstract
Porous silicon is an attractive material for label-free optical biosensors because of its biocompatibility, its large internal surface area, its open pore network, and its widely tunable refractive index. Many structures using this material and exploring reflectometry can be used for biosensing. The sensor performances and sensitivity depends on the parameters of the porous silicon layers and its thermal treatment such as porosity, pore size, oxidation degree, and used wavelength. A theoretical framework to model the reflectance spectra of three optical nanostructures (monolayer, Bragg mirror, and microcavity based on porous silicon layers) before and after the functionalization step is used to study the merit parameters for each device. Based on this theoretical work, optimized conditions to fabricate glucagon biosensors are proposed. A microcavity formed by a period constituted of two porous layers of porosities equal to 95% and 65% with a pore size of 60 and 51 nm, respectively, and with 40% oxidation degree allows a significant redshift to be obtained. The value of minimum detectable coating thickness for a detection system capable of resolving a wavelength shift of 0.1 nm is about 5×10−3 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.