Abstract
The first-principles with pseudopotentials method based on the density functional theory was applied to calculate the geometric structure, the formation energy of impurities and the electronic structure of Li-doped ZnO. In the system of Li-doped ZnO, LiZn can not result in lattice distortion. In contrast with that case, LiO and Lii result in lattice distortion after Li doping in ZnO. In Li-doped ZnO, LiO is the most unstable than the other cases. Simultaneously, Lii is more stable than LiZn according to that Lii has smaller formation energy. Furthermore, the electronic structure of Li-doped ZnO indicates that that LiZn behaves as acceptor, while Lii behaves as donor. In conclusion, in Li-doped ZnO, Lii is always in the system to compensate the acceptor. Singly doping Li in ZnO is difficult to gain p-ZnO for the self-compensation. The results are in good agreement with other calculated and experimental results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.