Abstract

In the present work the electronic spectra of [PtCl(4)](2-), [PtBr(4)](2-), and [Pt(CN)(4)](2-) are studied with a recently proposed relativistic time-dependent density-functional theory (TDDFT) based on the two-component zeroth-order regular approximation and a noncollinear exchange-correlation (XC) functional. The contribution to the double group excited states in terms of singlet and triplet single group excited states is estimated through the inner product of the transition density matrix obtained from two-component and scalar relativistic TDDFT calculations to better understand the double group excited states. Spin-orbital coupling effects are found to be very important in order to simulate the electronic spectra of these complexes. The results show that the two-component TDDFT formalism can afford excitation energies with high accuracy for the transition-metal systems studied here when use is made of a proper XC potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.