Abstract

It is known that a high-temperature reduced-graphene-oxide (HT-RGO) exhibits 3 orders of magnitude increase in the conductivity compared to original graphene oxide but still 3 orders of magnitude below the value of pristine graphene. Substantial amounts of defects that remain in the reduced sample are responsible for the inferior transport quality. On the basis of the defect model which involves C vacancies and the O substitution of edge C atoms, we study the electronic structure and conductivity of HT-RGO using nonequilibrium Green's function theory in tight binding and density functional theory schemes. It is shown that electrons are localized within 10–40 nm due to vacancy defects. We also discuss the transport behavior via such localized carriers in connection with recent experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.