Abstract

${\mathrm{GaAs}}_{1\ensuremath{-}x}{\mathrm{N}}_{x}$ alloys have unique properties among the III-V systems to simultaneously lower both the lattice constant and the band gap. Therefore, it has a strong potential for optoelectronic device applications. However, due to the large size mismatch between N and As, the growth of high-quality GaAsN alloy on GaAs substrates is difficult. To overcome this problem, we propose here a material, the ${\mathrm{GaAs}}_{1\ensuremath{-}x\ensuremath{-}y}{\mathrm{N}}_{x}{\mathrm{Bi}}_{y}$ alloy, which can be lattice matched to GaAs with the appropriate ratio between the concentration of Bi and N $(y=1.7x).$ Based on band structure and total-energy calculations we show that coalloying of Bi and N in GaAs lowers the alloy-formation energy and drastically reduces the amount of N needed to reach the 1-eV band gap, which is important for high-efficiency solar cell and infrared-laser applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.