Abstract

The dynamics and kinetics of the O((3)P) + CS(X(1)Σ(+)) → CO(X(1)Σ(+)) + S((3)P) chemical laser reaction was studied theoretically in detail for the first time, as a function of collision energy (0.0388-2.0 eV) and rovibrational excitation of CS. This was made using the quasi-classical trajectory (QCT) method and employing the best ab initio analytical ground potential energy surface (1(3)A' PES) available. A broad set of properties was determined, including scalar and vector properties, and the reaction mode. The behaviors observed and the considerable formation of OCS collision complexes were interpreted from some characteristics of the PES (early barrier, shallow minimum in the exit channel, and high exoergicity (mainly channeled into CO vibration; up to ∼81% of the available energy)) and the kinematics. The QCT vibrational and rotational CO populations and the vector properties show a quite good agreement with experiments, but the QCT rate constants disagree. To better account for the kinetics, we performed CASPT2/aug-cc-pVTZ ab initio calculations on the stationary points along the minimum energy path of the ground and first excited (1(3)A'') PESs. The transition state theory, which can be satisfactorily applied here, leads to rate constants (100-2000 K) that are quite close to the measured ones, where comparison is possible (150-300 K). We expect that these results will encourage further theoretical and experimental developments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.