Abstract

A novel reaction route was proposed from 5-hydroxymethylfuran-2- carbaldehyde (HMFCA) to 2-hydroxy-5-methylene-2,5-dihydro-furan-2-carbaldehyde (HMDFC) on the basis of the mechanism previously offered by Horvat, to account for the formation mechanism of levulinic acid. The probabilities of the two mechanisms were compared by Gaussian 03 software. It was found that the conversion from HMFCA to HMDFC in the newly deduced mechanism has a lower net energy requirement than that in the original mechanism, and thus should be more preferable. The mechanism indicates that HMFCA is initially protonized by H+ addition at the position 5 of the furan ring, and then combines with OH-, thereby completing the hydration process after isomerization. Finally, an H2O molecule is released, forming the intended intermediate product of HMDFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.