Abstract

The CO interaction with bimetallic RhCu surface models representing several compositions has been studied by first principles density functional theory calculations. The analysis of the bare bimetallic clusters Rh(4s) and Cu(3s) core-level binding energies indicates that is not possible to extract information about the oxidation state of the alloy components. The present calculations predict that CO does always sit on top sites, the influence of the alloy composition on the equilibrium geometry and vibrational frequency of CO chemisorbed at a given Rh or Cu site being very small. However, there is a large difference in the structural properties corresponding to CO chemisorption above either Rh or Cu. Therefore, the absolute value of the vibrational frequency of chemisorbed CO does not permit to extract any information about the alloy composition but afford to assign the chemisorption site. Finally, the CO adsorption energy does not follow a monotonic trend with composition. The use of the Constrained Space Orbital Variation analysis permits one to firmly establish that the difference in adsorption energy for different compositions cannot be explained through differences in the σ-donation and π-backdonation mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call