Abstract

Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this semiconductor, Marcus electron transfer theory and the embedded model, which can give small intramolecular reorganization energies, were employed. The calculated results were in good agreement with the experimental values, so the above computing model is appropriate to assess the electrical property of TTF. On this basis, we predicted the charge mobility of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6- tetrathiapentalene (BDH-TTP) crystals, for which the molecular structure is similar to TTF. The calculated results indicated that BDH-TTP is a p-type material, which has a better performance than TTF in hole transfer due to larger hole coupling and the smaller hole injection barrier. In addition, the direct coupling (DC) and the site energy correction (SEC) methods were used to calculate the charge transfer integrals. Although the results were slightly different, the qualitative trends were the same. Furthermore we took into account the anisotropic transfer properties of TTF and BDH-TTF, since obviously the mobilities along one dimension are larger than those along three dimensions. Finally, natural bond orbital analysis was used to study the interactions in all of the dimers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.