Abstract

Reactions of methyl fluoride with bare alkaline-earth metal monocations (Mg+, Ca+, Sr+, and Ba+) were studied using theoretical methods. Thermochemical data were calculated using density functional theory in conjunction with polarized 3-ζ and 4-ζ basis sets. Variational/conventional microcanonical transition state theory was used for the calculation of the reaction rate constants over a large range of temperatures. According to our calculations, the Ca+, Sr+, and Ba+ reactions with CH3F proceed to yield CaF+, SrF+, and BaF+, in agreement with the experimental observation. The theoretically predicted global rate constants are in reasonable agreement with the experimental data. In the case of Mg+, the large value of the computed energy barrier associated with the “inner” transition structure is fully consistent with the limited progress experimentally observed for this reaction. The importance of bottlenecks other than the “inner” transition state is highlighted and its mechanistic implications discussed. Particularly, our calculations suggest that the studied processes proceed through a “harpoon-like” mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.