Abstract

We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of CrH(X6Σ+) in collisions with 3He. A two dimensional potential energy surface (PES) was calculated with the partially spin-restricted coupled cluster singles, doubles, and non-iterative triples [RCCSD(T)] method. The global minimum was found for the collinear He⋯Cr-H geometry with the well depth of 1143.84 cm-1 at Re = 4.15 a0. Since the RCCSD(T) calculations revealed a multireference character in the region of the global minimum, we performed additional calculations with the internally contracted multireference configuration interaction with the Davidson correction (ic-MRCISD+Q) method. The resulting PES is similar to the RCCSD(T) PES except for the region of the global minimum, where the well depth is 3032 cm-1 at Re = 3.8 a0. An insight into the character of the complex was gained by means of symmetry-adapted perturbation theory based on unrestricted Kohn-Sham description of the monomers. Close coupling calculations of the Zeeman relaxation show that although the ΔMJ=MJ'-MJ = -1 and -2 transitions are the dominant contributions to the collisional Zeeman relaxation, ΔMJ<-2 transitions cannot be neglected due to the large value of CrH spin-spin constant. The calculated elastic to inelastic cross section ratio is 1600 for the RCCSD(T) PES and 500 for the MRCISD+Q PES, while the estimate from the buffer-gas cooling and magnetic trapping experiment is 9000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.