Abstract

We study theoretically the structure and spectroscopic properties of the alkali alkaline-earth (LiBe)+ ion. The potential energy curves and their spectroscopic parameters, permanent and transition dipole moments are determined with a quantum chemistry approach. The (LiBe)+ ion is modelled as two valence electron system moving in the field of Be2+ and Li+ cores, which are described by pseudopotentials. In addition, effective core-polarization potentials are included to correct the energy. The molecular calculations are performed using a standard quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarization potentials, and full configuration interaction (CI) calculations. The precision of our spectroscopic parameters are discussed by comparison with currently available theoretical results. A rather good agreement is observed for the ground and first excited states. The permanent dipole moments reveal many abrupt changes, which are localized at particular distances corresponding to the positions of the avoided crossings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call