Abstract

The adsorption and diffusion of oxygen atom on the O -terminated ZnO [Formula: see text] surface have been systematically investigated based on first-principles density functional theory. The results show that the surface relaxation of the ZnO [Formula: see text] surface is significant. In the view of the maximization of the adsorption energy, the preferred site for the adsorption of oxygen atom is the top- O site above the oxygen atom of the first Zn – O bilayer. There is chemical bond formed between the adsorbed oxygen atom and the oxygen atom on the surface, which will result in the redistribution of the charges. The charges transfer from the ZnO surface to the adsorbed oxygen atom, which will heighten the surface potential of ZnO surface and increase the surface work function. Moreover, the diffusion of the oxygen atom on the ZnO surface has also been investigated, and the potential barriers of the diffusion have been identified to reveal the adsorption stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call