Abstract

Inner-shell absolute photoabsorption and photoionization cross sections of the formic acid, HCOOH, and its small hydrogen-bonded clusters, i.e., (HCOOH)2, HCOOH2 +, HCOHOH+, and HCOOH·H3O+, were calculated at the time-dependent density functional theory (TDDFT) level, and the results were used to analyze the effect of the formic acid clustering on the carbon and oxygen K-edge photoionization cross sections. The discrete electronic pseudospectra obtained with square-integrable (L2) basis set calculations were used in an analytic continuation procedure based on continued fraction functions to obtain the photoabsorption cross sections. Symmetry adapted cluster configuration interaction calculations on the small formic acid clusters have also been performed at the oxygen K-edge to assign the discrete transitions and ionization potentials in support to the TDDFT results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.