Abstract

The [2+3] cycloaddition of nitrone PhCHdoublebondN(Me)O to nitriles RCtriplebondN (R=Me, Ph, CF(3)) was studied using quantum chemical calculations at the HF/6-31G* and B3LYP/6-31G* level of theory. With MeCN and PhCN, the reaction occurs through a concerted mechanism and leads selectively to Delta(4)-1,2,4-oxadiazolines rather than Delta(2)-1,2,5-oxadiazolines. Electron withdrawing substituents such as CF(3) at the nitrile provoke a non-synchronous bond formation, with the C-O bond being established on an earlier stage than the C-N bond. Additionally, the reaction becomes thermodynamically and kinetically more favourable. In the reaction of adducts of MeCN with BH(3) or BF(3) as model Lewis acids, the mechanism was found to change from fully concerted in the case of free MeCN towards a two-step reaction in the presence of BF(3), in which C-O bond formation occurs first. The BH(3)-mediated reaction occupies an intermediate stage where ring formation occurs in one-step but non-simultaneously, similar to the reaction of CF(3)CN. Interaction of the Lewis acid with the nitrile in the course of the reaction facilitates the cycloaddition by stabilizing transition states, intermediate and product rather than by activating the nitrile. The solvent influences the organic reaction mainly by lowering the energy of the reagents, thus leading to a higher activation barrier in a more polar solvent. In the Lewis acid mediated reaction, in contrast, the intermediate is strongly stabilised by a polar solvent and with that the synchronicity of the reaction changes in favour of a two-step mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.