Abstract

Our calculations are done with the help of density functional theory (DFT). Actually, we could find the structural and optical properties of the wurtzite-type ZnO compound. The pseudo-potential linearised augmented plane wave (PP-LAPW) method is applied to solve the Kuhn-Sham equations. The results are obtained using Both Generalized Gradient Approximation according to the scheme described by Perdew-Burke-Ernzerhof(GGAPBE) and Local Density Approximation according to the scheme described by CeperlyAlder (LDA-CA) approximations as two types of exchange-correlation. The convergence of energy and charge has been checked. This is in order to study the properties of the ground state. It was found that the primary cell constants calculated in the equilibrium state are very close to the previous theoretical works. The general results of optical properties including the imaginary part of the dielectric constant, reflectivity, absorption coefficient, refractive index, optical conductivity, and extinction coefficient of wurtzitephase ZnO under the imposed conditions are discussed and compared with previous works. Our results show new and important optical properties. Besides, we predicted the behavior of transparent conductive oxides in the direction of light

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.