Abstract

In this work we study the spectral responses of thin films solar cells of heterojunctions based on CuInSe2 and CuInS2. Four-layer structures are studied according to the n+n/pp+ model. First we consider the structure ZnO(n+)/CdS(n)/CuInS2(p)/CuInSe2(p+) where CuInS2 represent the base and CuInSe2 the substrate in this model. Secondly we consider the structure ZnO(n+)/CdS(n)/CuInSe2(p)/ CuInS2(p+), for this model CuInSe2 represent the base and CuInS2 the substrate. ZnO and CdS are used as window layers in each structure. Using the continuity equation that governs transport of carriers in semiconductor material, models for calculating spectral responses are proposed for heterojunctions type n+n/pp+ based on CuInSe2 and CuInS2. For each structure we have presented the energy band diagram based on the Anderson model [1] and determined the expression of the photocurrent. The theoretical results obtained allow to compare the performances of these two models by optimizing the different parameters of each structure (base thickness, diffusion length, recombination velocity at the interface, etc.) in order to improve the overall efficiency of the collection of carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.