Abstract

Copper-filled carbon nanotubes (Cu@CNTs) have been extensively reported to possess remarkable axial mechanical properties, but little is known about their radial mechanical properties. In this study, we perform the molecular dynamics (MD) simulations to systematically investigate the radial compression of Cu@CNTs. The results indicate that Cu@CNTs possess very high radial strength. The force–strain curves show several soft-to-hard transitions during the compression. The radial strengths of the empty CNTs and copper-filled double-walled carbon nanotubes (Cu@DWCNTs) have been calculated for comparison. Effects of tube length, diameter, chirality, and the number of Cu atoms on the radial mechanical properties are also discussed. This study may provide motivation to explore new applications of metal-filled CNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.