Abstract

Rechargeable batteries with superior electronic conductivity, large capacity, low diffusion barriers and moderate open circuit voltage have attracted amount attention. Due to abundant resources and safety, as well as the high voltage and energy density, potassium ion batteries (KIBs) could be an ideal alternative to next-generation of rechargeable batteries. Based on the density functional theory calculations, we find that the SnS2 monolayer expands greatly during the potassiumization, which limits its practical application. The construction of graphene/SnS2/graphene (G/SnS2/G) heterojunction effectively prevents SnS2 sheet from deformation, and enhances the electronic conductivity. Moreover, the G/SnS2/G has not only a high theoretical special capacity of 680 mAh g−1, but an ultra-low K diffusion barrier (0.08 eV) and an average open circuit voltage (0.22 V). Our results predict that the G/SnS2/G heterostructure could be used as a promising anode material for KIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call