Abstract
By using first-principles calculations, the sensing properties of pristine and transition metal (TM) atoms (Ti, V, and Co) embedded germanium selenide (GeSe) monolayer toward small gas molecules (H2, NH3, CO, O2, SO2, NO, and NO2) were investigated. The adsorption energies, electronic structure, optical properties, and recovery time of the adsorption systems were calculated and analyzed in detail. The results indicate that TM doped GeSe has stronger interaction with gas molecules compared with the pristine GeSe monolayer. Especially for Ti- and V-GeSe monolayer, the absolute value of adsorption energies are up to 2 eV for O2, NO, and NO2. The doping with TM atoms also changes the charge transfer and electronic structures of adsorption systems. Combined with the result of the calculated optical properties and recovery time, it can be concluded that Ti-GeSe monolayer has great potential for NH3 detection, while Co-GeSe monolayer can be very promising SO2 gas sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.