Abstract

A computational study of the cyclopropanation reactions of divalent samarium carbenoid ISmCH(2)I with ethylene is presented. The reaction proceeds through two competing pathways: methylene transfer and carbometalation. The ISmCH(2)I species was found to have a "samarium carbene complex" character with properties similar to previously investigated lithium carbenoids (LiCH(2)X where X = Cl, Br, I). The ISmCH(2)I carbenoid was found to be noticeably different in structure with more electrophilic character and higher chemical reactivity than the closely related classical Simmons-Smith (IZnCH(2)I) carbenoid. The effect of THF solvent was investigated by explicit coordination of the solvent THF molecules to the Sm (II) center in the carbenoid. The ISmCH(2)I/(THF)(n)() (where n = 0, 1, 2) carbenoid methylene transfer pathway barriers to reaction become systematically lower as more THF solvent is added (from 12.9 to 14.5 kcal/mol for no THF molecules to 8.8 to 10.7 kcal/mol for two THF molecules). In contrast, the reaction barriers for cyclopropanation via the carbometalation pathway remain high (>15 kcal/mol). The computational results are briefly compared to other carbenoid reactions and related species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.