Abstract

We have investigated the binding of noble-gas (Ng) atoms (Ng=Ar,Kr,Xe) with Pt atom by the ab initio coupled-cluster CCSD(T) method, taking into account the relativistic effects. It is shown that two Ng atoms can bind with Pt atom in linear geometry in the singlet lowest state where the second Ng atom attaches to Pt with the larger binding energy than the first Ng atom. The binding energy is evaluated as 8.2, 17.9, and 33.4 kcal/mol for Ar-Pt-Ar, Kr-Pt-Kr, and Xe-Pt-Xe, respectively, relative to the triplet ground state of the dissociation limit Pt ((3)D)+2Ng. The present results indicate that these Ng-Pt-Ng compounds are possible new gas-phase or matrix species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.