Abstract
We investigate theoretically the effect of hydrogen bond bending motion on the proton coupled electron transfer (PCET) reaction, using a model system where an intramolecular hydrogen-bonded phenol group is the proton donor. It is shown that, in a two-dimensional (2D) model of the PCET reaction, the bending and stretching vibrational motions are separated, and due to the hydrogen bond configuration and anharmonicity of the potential energy surface, the bending vibration can play a role in the PCET reaction. The results are also compared with two different sets of one-dimensional models (1D-linear and 1D-curved). Due to contributions of the bending motion, the rate constants in the 2D model are larger than those in the 1D-linear model, although the differences between the total rate constants and KIEs for 2D and 1D models are not major. Results from the 1D-curved model lie between the 2D- and 1D-linear models, indicating that it can include some effect of bending motion in reducing the potential energies along the reaction path.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.