Abstract

Our calculations based upon Becke's three-parameter functional of density-functional theory (DFT) with the correlation of Lee, Yang, and Parr (B3LYP), natural bond orbital, and atoms in molecule indicate that in drastic contrast to most H-bonded systems, the anticooperative and cooperative effects coexist in the linear H-bonded cis-,trans (c,t)-cyclotriazane clusters (n = 2-8). As cluster size increases, the properties along the H-bonded chains at trans-positions take on the unexpectedly anticooperative changes which are reflected in elongation of the N...H hydrogen bonds, frequency blueshift in the N-H stretching vibrations, decay in the n(N)-->sigma*(N-H) charge transfers, and weakening of strengths of the N...H bonds. And the cooperative changes in the corresponding properties for the cis- H-bonded chains are observed to be concurrent with the anticooperativities. The rise and fall in the n(N)-->sigma*(N-H) interactions cause increment and decrement in capacities of the clusters to concentrate electrons at the bond critical points of the N...H bonds, and thereby leading to the cooperative and the anticooperative changes especially in the N...H lengths and the N-H stretching frequencies. In terms of three-body symmetry-adapted perturbation theory (three-body SAPT), the first exchange nonadditivity plays a more important role in stabilizing trimer than the nonadditive induction. However, the dominance of the first exchange nonadditivity in three-body interaction unexpectedly triggers the anticooperative effect that counteracts the concurrent cooperative effect. According to the SAPT(DFT), which is a combination of SAPT with asymptotically corrected DFT, DFT/B3LYP is able to succeed in describing the electrostatic, exchange, and induction components, but fails to yield satisfactory interaction energies due to the fact that about 40% of short-range dispersion energy is neglected by the DFT, which is different from many H-bonded described well by the DFT. A quantum cluster equilibrium model illustrates that the c,t-cyclotriazane liquid phase exhibits a weak cooperative effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call