Abstract
The role of bismuth in the selective oxidation of propene has long been debated. We performed density functional calculations to study the dehydrogenation reaction of propene on Bi2O3 surfaces. Our calculated thermodynamic data reveal that the first dehydrogenation of propene on the most stable (010) surface and the (100) surface are difficult. Our calculations indicate that the barrier of the first hydrogen abstraction on the high Miller index surface (211) is much lower than those on the (100) and (010) surfaces, and is close to the experimental one. Further dehydrogenation is shown to be difficult and production of 1,5-hexadiene through dimerization of allyl is likely, in agreement with the experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.