Abstract

A series of oligo(thienylenevinylene) derivatives with 1,4-dihydropyrrolo[3,2-b]pyrrole as core has been investigated at the PBE0/6-31G(d) and the TD-PBE0/6-31+G(d,p) levels to design materials with high performances such as broad absorption spectra and higher balance transfer property. The results show that position and amount of arm affect the electronic density contours of frontier molecular orbitals significantly. The molecule with four arms owns the narrowest energy gap and the largest maximum absorption wavelength, and the molecule with two arms in positions a and c has the broadest absorption region among the designed molecules. Calculated reorganization energies of the designed molecules indicate that the molecules with two arms can be good potential ambipolar transport materials under proper operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call