Abstract

A quantum-chemical study at the Hartree–Fock, (HF), second order Møeller–Plesset perturbation theory, (MP2), and density functional theory, (DFT), levels was performed on perfluorinated oligothiophenes with the aim to predict the potential utility of these materials in the development of electronic devices based on organic n-type semiconductors. The electronic properties analyzed, such as ionization potential, HOMO–LUMO energy difference and electron affinities suggest that perfluorinated oligothiophenes are more difficult to oxidize, and have a larger band gap in comparison with their non-substituted parent compounds. Structural changes on bond lengths and bond angles between perfluorinated and non-substituted oligothiophenes were also observed. Thus, the incorporation of fluorine atoms into oligomers structure could be an effective way to design materials with n-type conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.