Abstract
Recently, p-terphenyls containing alkoxylated backbones with or without CN groups on either the central phenyl ring or peripheral rings were synthesized and their photo-luminescent properties were studied. Herein, semi-empirical AM1 and density functional theory (DFT) B3LYP calculations with the 6-31G* basis set have been performed to optimize structure for the ground state and the semi-empirical ZINDO calculations have been used to determine the maximum absorption ( λ abs max) and emission wavelengths ( λ emi) for 19 p-terphenyls. The steric effect is assigned to be responsible for the calculated λ abs max and λ emi shifts and the CN group at the central phenyl with ortho-substitution and at peripheral phenyl rings with para-substitution can also significantly influence these spectra. According to experimental results, the p-terphenyls with CN groups may have a lower energy of LUMO, and thus, we investigated the influence of the substitution position and the number of CN groups on the p-terphenyl moiety. The calculated optical and electronic properties provide important information on the behavior of the corresponding Organic light-emitting diode device (OLED). The suggested theoretical calculation protocol can be employed to predict electro-luminescent characteristics of other materials, and further, to design novel materials for OLED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Luminescence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.