Abstract

The first key step in the oxidation of water to O(2) by the oxidized species [(bpy)(2)(O)Ru(V)ORu(V)(O)(bpy)(2)](4+) of the Ru blue dimer is studied using density functional theory (DFT) and an explicit solvent treatment. In the model reaction system [L(2)(O)Ru(V)ORu(V)(O)L(2)](4+)·(H(2)O)(4)·W(76), the surrounding water solvent molecules W are described classically while the inner core reaction system is described quantum mechanically using smaller model ligands (L). The reaction path found for the O--O single bond formation involves a proton relay chain: direct participation of two water molecules in two proton transfers to yield the product [L(2)(HOO)Ru(IV)ORu(IV)(OH)L(2)](4+)·(H(2)O)(3)·W(76). The calculated ∼3 kcal/mol reaction free energy and ∼15 kcal/mol activation free energy barrier at 298 K are consistent with experiment. Structural changes and charge flow along the intrinsic reaction coordinate, the solvent's role in the reaction barrier, and their significance for water oxidation catalysis are examined in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.