Abstract

In this study we present a theoretical investigation of the molecular properties of nitrodibenzofurans (NDFs) and dinitrodibenzofurans (DNDFs) and their relation to mutagenic activity. Equilibrium geometries, relative energies, vertical ionization potentials (IP), vertical electron activities (EA), electronic dipole polarizabilities, and dipole moments of all NDFs and three DNDFs calculated by Density Functional Theory (DFT) methods are reported. The Ziegler/Rauk Energy Decomposition Analysis (EDA) is employed for a direct estimate of the variations of the orbital interaction and steric repulsion terms corresponding to the nitro group and the oxygen of the central ring of NDFs. The results indicate differences among NDF isomers for the cleavage of the related bonds and steric effects in the active site. The results show a good linear relationship between polarizability (<α>), anisotropy of polarizability (Δα), the summation of IR intensities (ΣIIR) and the summation of Raman activities (ΣARaman) over all 3N-6 vibrational modes and experimental mutagenic activities of NDF isomers in Salmonella typhimurium TA98 strain. The polarizability changes with respect to the νsNO+CN vibrational mode are in correlation with the mutagenic activities of NDFs and suggest that intermolecular interactions are favoured along this coordinate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call