Abstract

Molybdenum (Mo) is a rare and important element extensively utilised in aerospace, radar communications, optoelectronic devices, and the military. This study proposes an environmentally friendly physical method based on photon-phonon resonance absorption for the separation of Mo from sodium molybdate (Na2MoO4). We examined the vibrational spectrum of Na2MoO4 using the CASTEP code, employing first-principles density functional theory. Through dynamic process analysis, we analysed the vibrational modes and assigned peaks corresponding to experimental infrared (IR) and Raman data. We focused on the vibrational modes associated with Mo and identified that the highest-intensity IR-active peak at 858 cm-1 corresponded to Mo-O bond asymmetric stretching. Therefore, we propose the use of a high-power terahertz laser at ~25 THz to facilitate the separation of Mo from Na2MoO4. Experimental investigations are expected in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.