Abstract

The reaction mechanism and kinetics for the abstraction of hydrogen and addition of hydroxyl radical (OH) to 2′-deoxycytidine have been studied using density functional theory at MX06-2X/6-311+G(d,p) level in aqueous solution. The optimized geometries, energies, and thermodynamic properties of all stationary points along the hydrogen abstraction reaction and the addition reaction pathways are calculated. The single-point energy calculations of the main pathways at CCSD(T)/6-31+G(d,p)//MX06-2X/6-311+G(d,p) level are performed. The rate constants and the branching ratios of different channels are evaluated using the canonical variational transition (CVT) state theory with small-curvature tunneling (SCT) correction in aqueous solution to simulate the biological system. The branching ratios of hydrogen abstraction from the C1′ site and the C5′ site and OH radical addition to the C5 site and the C6 site are 57.27% and 12.26% and 23.85% and 5.69%, respectively. The overall calculated rate constant is 4.47 × 109 dm3 mol−1 s−1 at 298 K which is in good agreement with experiments. The study could help better understand reactive oxygen species causing DNA oxidative damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.