Abstract

We derive a formula for the magnetic field outside volume conductors having axial symmetry with radial and axial symmetrically distributed source currents. The magnetic field is shown to have components only along the cylindrical polar angle direction and its magnitude to depend only on the topological structure of the volume conductor and the location of the source current. With this formula, the magnetic field generated by the volume current of a current monopole within and on the symmetrical axis of several volume conductors (such as semi-infinite volume, infinite slab, sphere, infinite cylinder, semi-infinite cylinder, finite cylinder, prolate spheroid, and oblate spheroid) is shown to be equivalent to the magnetic field generated by a line current calculated using the Biot-Savart's law. In the first three volume conductors, the monopole solution of the magnetic field allows the calculation of magnetic fields generated by arbitrarily distributed (and balanced for finite volume conductors) current monopoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.