Abstract

A theoretical and computational study of the nitrogen superhyperfine structure in Cu(II) complexes is reported. The determination of hybridization parameters for nitrogen donor orbitals from the data is examined. For most Cu(II) complexes the results deviate substantially from pure “sp2” or “sp3” hybridization. Semiempirical INDO/S calculations for five Cu(II) complexes were carried out at the UHF and ROHF level. The results suggest that the small anisotropy in the nitrogen hyperfine parameters is caused by spin polarization of the nitrogen valence shell orbitals. A simple, approximate way for the determination of the π-spin density from experimental data is outlined. A density functional study using various basis sets and functionals is reported for the same five complexes. Hybrid functionals, such as B3LYP and PWP1, give better predictions than functionals based on the generalized gradient approximation like BP or BLYP. Provided that at least a polarized triple-ζ basis is used, the hybrid functionals B3...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.