Abstract
Photocatalysis induced by sunlight is one of the most promising approaches to environmental protection, solar energy conversion, and sustainable production of fuels. The computational modeling of photocatalysis is a rapidly expanding field that requires to adapt and to further develop the available theoretical tools. The coupled transfer of protons and electrons is an important reaction during photocatalysis. In this work, we present the first step of our methodology development in which we apply the existing kinetic theory of such coupled transfer to a model system, namely, methanol photodissociation on the rutile TiO2(110) surface, with the help of high-level first-principles calculations. Moreover, we adapt the Stuchebrukhov-Hammes-Schiffer kinetic theory, where we use the Georgievskii-Stuchebrukhova vibronic coupling to calculate the rate constant of the proton coupled electron transfer reaction for a particular pathway. In particular, we propose a modified expression to calculate the rate constant, which enforces the near-resonance condition for the vibrational wave function during proton tunneling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.