Abstract
Current understanding of the intrinsic point defects and potential extrinsic dopants in p-type Cu2SnSe3 is limited, which hinders further improvement of its thermoelectric performance. Here, we show that the dominant intrinsic defects in Cu2SnSe3 are CuSn and VCu under different chemical conditions, respectively. The presence of VCu will damage the hole conduction network and reduce hole mobility. Besides, we find that the substitution of Al, Ga, In, Cd, Zn, Fe, and Mn for Sn can inhibit the formation of VCu; introducing CuSn, FeSn, MnSn, and NiCu defects can significantly enhance electronic density of states near the Fermi level due to the contribution of 3d orbitals. Therefore, increasing the Cu content and/or introducing the above beneficial dopants appropriately are expected to cause enhancement of carrier mobility and/or thermopower of Cu2SnSe3. Furthermore, introducing AgCu, AlSn, ZnSn, GeSn, and MnSn defects can induce large mass and strain field fluctuations, lowering lattice thermal conductivity remarkably. Present results not only deepen one's insights into point defects in Cu2SnSe3 but also provide us with a guide to improve its thermoelectric properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.