Abstract

The hydrogen absorption-desorption isotherms on LaNi3.8Al1.2−xMnx alloy at temperature T = 433K is studied through various theoretical models. The analytical expressions of these models were deduced exploiting the grand canonical ensemble in statistical physics by taking some simplifying hypotheses. Among these models an adequate model which presents a good correlation with the experimental curves has been selected. The physicochemical parameters intervening in the absorption-desorption processes and involved in the model expressions could be directly deduced from the experimental isotherms by numerical simulation. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site n1 and n2, the receptor site densities N1m and N2m, and the energetic parameters P1 and P2. The behaviors of these parameters are discussed in relation with absorption and desorption processes to better understand and compare these phenomena. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 266 and 269.4KJ/mol for absorption process and between 267 and 269.5KJ/mol for desorption process comparable to usual chemical bond energies. Using the adopted model expression, the thermodynamic potential functions which govern the absorption/desorption process such as internal energy Eint, free enthalpy of Gibbs G and entropy Sa are derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call