Abstract

The equilibrium geometry, relative energies, normal mode frequencies, and electron and spin density distributions for first-row transition metal porphyrins M(P) (M is a transition metal in the oxidation state +2, P = C20H12N4) and their five-and six-coordinate carbonyl complexes M(P)CO and M(P)(CO)(AB) (AB = CO, CN−, CS) in different spin states have been calculated by the density functional theory B3LYP method with the 6-31G and 6-31G* basis sets. The energies of binding of the CO group to M(P) molecules D(M-CO) have been estimated. The calculated properties change as a function of the metal, the number of carbonyl groups (shown for Fe(P) as an example), and the multiplicity. Calculations show that, for five-coordinate complexes M(P)CO with M = Ti and V, high-spin states and significant D(M-CO) energies are typical. For Fe(P)CO, a singlet with a small D(M-CO) energy is preferable. For Cr(P)CO and Mn(P)CO (which also have small D(M-CO) energies), the states with different spins, which strongly differ in geometry and electronic structure, are close in energy, within 0.1–02. eV. The energy of binding of CO to M(P)CO (M = Cr, Mn, Fe) is considerably higher than the energy of binding of CO to M(P), which is evidence that the transformation of five-coordinate metalloporphyrins into six-coordinate ones is energetically favorable. The behavior of the D(M-CO) energies is interpreted using a qualitative model that considers not only the effects of participation (or nonparticipation) of “active” \( d_{x^2 - y^2 } \), and \( d_{z^2 } \), d xz , and d yz AO in bonding of M to the P ring and axial ligands, but also the fraction of the total bond energy consumed for the preparation (promotion) of those “valence states” of the M(P) molecules that are realized in M(P)CO and M(P)(CO)(AB) complexes. For the series of compounds Fe(P)(CO)2 − Fe(P)(CO)(CS) − Fe(P)(CS)2 − Fe(P)(CO)(CN−) in the singlet, triplet, and ionized states, the trans influence of axial ligands in low-spin metalloporphyrins is shown to follow the same qualitative scheme as is typical of octahedral transition metal complexes: in mixed-ligand complexes (as compared to the symmetric ones), the stronger bond becomes shorter and even stronger, while the weaker bond becomes longer and even weaker. It is assumed that the same scheme will persist for more complicated low-spin six-coordinate metalloporphyrins in the states with the vacant \( d_{z^2 } \) AO and occupied d xz and d xz AOs involved in bonding with both axial ligands with the filled shell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.