Abstract

Sulfur dioxide (SO2), a toxic air pollutant, can have harmful effects on human health when inhaled or when it forms bisulfite in the body. In the present work, a ratiometric fluorescent probe, 2-(2′-hydroxyphenyl)benzothiazole-3-ethyl-1,1,2-trimethyl-1H-benzo[e]indolium (HBT-EMBI), was selected to study the mechanism of SO2 derivatives detection. This study provides insights into the attributions of ratiometric fluorescence through hydrogen bond dynamics, electronic excitation properties, radiation rates, and excited state intramolecular proton transfer (ESIPT) processes using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) level. The results confirm that the large Stokes shifts and broad emission spectra of the HBT-EMBI probe are associated with its intramolecular charge transfer (ICT) characteristics and hydrogen bonding-driven ESIPT processes, respectively. After the addition reaction between the probe and HSO3−/SO32−, the conformational populations of HBT-EMBI-HSO3− transfer abnormally from enol configurations to more stable keto configurations, which leads to a distinguished change in the visible color and the ratiometric fluorescence signal, and is not due to the blockage of the ICT process of HBT-EMBI-HSO3−, as previously reported. This work provides a new perspective on the mechanism of detection of SO2 derivatives by ESIPT fluorescent probes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.