Abstract

Advances in computational modeling tools have allowed for the construction of detailed chemical models of oxidation processes to enhance the understanding of mechanisms and answer questions of interest in diverse fields such as DNA damage, lubricant oxidation, food chemistry, and art conservation. The construction of detailed kinetic models is facilitated by the use of kinetic correlations, such as Evans–Polanyi relationships, where the activation energy, EA, is related linearly to the heat of reaction, ΔHR: EA = E0 + α ΔHR. In this work, we present an Evans–Polanyi relationship based on properties determined from hybrid G4 quantum chemical calculations for an epoxidation reaction of peroxy species. We explore a broader chemical space at a higher level of theory than previous reports, and as a result, the importance of several key structural features, such as alkylhydroperoxy functional groups, that can strongly influence the trends observed was revealed. We suggest a subdivision of the reaction family in...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.