Abstract

The Floquet states of N(2) (2+) created by the interactions of the six lowest singlet (1 (1)Sigma(g) (+), 1 (1)Delta(g), 2 (1)Sigma(g) (+), 1 (1)Pi(u), 1 (1)Pi(g), and 1 (1)Sigma(u) (-)) states of the dication with intense (0.4 x 10(13) Wcm(2)) radiation have been studied using the recently developed multireference configuration interaction method with single and double excitations (MRCISD)-based approach. The adiabatic Floquet state coinciding near its minimum with the initial X (1)Sigma(g) (+) ground state and asymptotically correlating with A (1)Pi(u) (m = -1), i.e., with one less photon in the dressed state, is expected to be metastable, as is the ground state in the absence of a field, but to support up to the v(max) = 12 quasibound vibrational level in comparison with v(max) = 11 in the parent field-free X (1)Sigma(g) (+) ground state. The tunneling lifetimes of the highest vibrational levels in this adiabatic Floquet state are predicted to be several orders longer than those in the parent field-free state. Analysis of the complete basis set limit extrapolated MRCISD potential energy curve of the field-free X (1)Sigma(g) (+) state of N(2) (2+) calculated in the present work (R(e) = 1.130 A, omega(e) = 2011 cm(-1), omega(e)x(e) = 26.1 cm(-1)) is in good agreement with spectroscopic experimental data. Calculations on the field-free A (1)Pi(u) state (T(e) = 12 106 cm(-1), R(e) = 1.252 A, omega(e) = 1438 cm(-1), omega(e)x(e) = 23.5 cm(-1)) generally support earlier theoretical work and do not support reported experimental values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.